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The Vlasov-Poisson system of equations under inversion in a sphere
Renato Andrade Galvãoa)

(Dated: 28 November 2024)

In this work we develop the transformation of the Vlasov-Poisson’s system of equations under inversion in a sphere.
We depart by transforming the microscopic quantities and subsequently derive the transformed statistical functions. We
apply the so transformed expressions to obtain the inverted average plasma potential for a plasma system where the
velocity distribution is a Boltzmann distribution. An expression for the induced charge on the sphere follows naturally
from the expression of the inverted electrostatic field, which furnishes a mean to distinguish the induced charge number
by the plasma on the sphere from its total charge.

I. INTRODUCTION

The method of image charges of electrostatics is well
known among physicists since their graduating education,
where a typical use case is to obtain the electrostatic poten-
tial around a spherical conductor surrounded by few charged
particles. It is a mapping, generally used on a system of equa-
tions in order to simplify or to allow a mathematical solution
to a problem in some reciprocal space, or at least to provide
one alternative path to achieve an analytical or numerical so-
lution. The generalisation of the method from few particles
to a microscopic distribution of a large number of charges can
be achieved through the so called transformation inversion in
a sphere1, which is given in vectorial form by2

r′ =
a2

r
r̂ =

a2

r2 r , (1)

where a is the radius of the sphere, r is the position vector and
r′ is the reciprocal position vector. Such a transformation is
well known from classical electrodynamic theory.

In the present work we are concerned to apply this transfor-
mation to obtain the Vlasov-Poisson’s system of equations, by
taking ensemble averages over the transformed microscopic
distributions and fields. We hope that the equations obtained
in the present work will be useful to solve electrostatic plasma
physics problems. An advantage of the technique of project-
ing the image of a plasma into the other side of an interface3,4

is that it allows the integration of the Vlasov-Poisson’s equa-
tions to be performed in the whole space and, in the case of a
spherical interface, by replacing the integration of the Vlasov-
Poisson’s equations in the range r < a by their transformed
equations. The applicability of the transformed equations in
this work is limited to collisionless plasmas and electrostatic
fields. We can follow two ways to approach a problem: the
first is to replace the original system by the transformed one
and obtain a solution for this one. The second is to use the
transformed equations to extend the plasma inside the sphere,
so that the integration can be made in the whole space. In Fig.
1 we can see the picture of a finite plane, which can represent
a plasma layer, and its image inside an unitary sphere.

The manuscript is divided as follows: we develop the trans-
formation on the microscopic functions in Section II, where

a)Electronic mail: galvaora@proton.me

the transformation on the velocities is introduced, and the
transformed exact dynamical equation, which is known on the
field of plasma physics as the Klimontovich equation, is ob-
tained. From the transformed microscopic functions we derive
the transformed statistical functions and present the final sys-
tem of electrostatic equations, in Section III. In Section IV we
give an example of a stationary solution for the inverted one
particle distribution function, and apply the transformed equa-
tions to one example of the plasma-sphere system, where we
obtain not only the electrostatic potential around the sphere
but also determine the induced charge on the sphere, and also
determine the plasma stationary states. In Section V we make
our final remarks about the results and the present work.
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FIG. 1. The plane described by the position vector r = xx̂+ yŷ+ ẑ in
the range −1 ≤ x ≤ 1, −1 ≤ y ≤ 1, which is tangent to a sphere of
unitary radius, and its inverted image inside the sphere. The sphere
is cut in half for a good visualisation of the transformed plane.

II. MICROSCOPIC FUNCTIONS

The Poisson’s equation

∇
2
φ =−4πρ(r) (2)
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is invariant under the transformation (1). This means that, if
φ(r) is the exact potential due to a microscopic distribution of
charges, then the potential should transform like1

φ
′(r) =

a
r

φ(
a2

r
) =

r′

a
φ(r′), (3)

which is the Kelvin transformation5 of φ . Indeed, by direct
partial derivation of (3), we obtain

1
r2

∂

∂ r

[
r2 ∂φ ′

∂ r

]
=

r′4

a5

(
2

∂φ

∂ r′
+ r′

∂ 2φ

∂ r′2

)
=

r′5

a5
1
r′

∂ 2

∂ r′2
[
r′φ
]

=
r′5

a5
1

r′2
∂

∂ r′

[
r′2

∂φ

∂ r′

]
=

a5

r5

(
1

r′2
∂

∂ r′

[
r′2

∂φ

∂ r′

])
.

(4)

From Poisson’s equation we arrive to ρ ′(r) = (a5/r5)ρ(a2/r)
where r′ = a2/r.

A. Equations of motion

If ri(t) is the position vector of a plasma particle, then it
follows from (1) that its image has a position r′i(t) given by

r′i =
a2

r2
i

ri. (5)

It follows from (5) that

dr′i
dt

= v′i =
a2

r2
i

vi −2
a2

r2
i

(
ri ·vi

r2
i

)
ri,

dv′i
dt

= a′i =
a2

r2
i

ai −4
a2

r2
i

(
ri ·vi

r2
i

)
vi

+8
a2

r2
i

(
ri ·vi

r2
i

)2

ri −2
a2

r2
i

(
v2

i + ri ·ai

r2
i

)
ri,

(6)

where vi = dri/dt and ai = dvi/dt.

B. The microscopic distribution in spherical coordinates

We need to transform the microscopic particle distribution6

Nα(r,v, t) = ∑
i

δ (r− rαi(t))δ (v−vαi(t)). (7)

In this work the index α identifies the type of plasma particle,
while the index i identifies a particle of type α , represented by
αi. From here to the remaining of the Section II, we omit the
index α in summations for economy of notation.

The position distribution in spherical coordinates is

δ (r− ri) =
1

r2
i sinθi

δ (r− ri)δ (θ −θi)δ (ϕ −ϕi). (8)

We want to obtain the microscopic velocity distribution in
spherical generalized coordinates.

Let us obtain the Jacobian of the transformation
dvxdvydvz → |J|dṙdθ̇dϕ̇ . For this we use the well known
coordinate transformation x = r sinθ cosϕ , y = r sinθ sinϕ ,
z = r cosθ . By taking the total time derivative of x, y and z,

ẋ = ṙ sinθ cosϕ + rθ̇ cosθ cosϕ − rϕ̇ sinθ sinϕ,

ẏ = ṙ sinθ sinϕ + rθ̇ cosθ sinϕ + rϕ̇ sinθ cosϕ,

ż = ṙ cosθ − rθ̇ sinθ ,

from which the Jacobian of the transformation is
J = r2 sin3

θ cos2 ϕ + r2 cos2 θ sinθ cos2 ϕ + r2 sinθ sin2
ϕ =

r2 sinθ . Therefore the velocity distribution in spherical
coordinates is given by

δ (v−vi) =
1

r2
i |sinθi|

δ (ṙ− ṙi)δ (θ̇ − θ̇i)δ (ϕ̇ − ϕ̇i). (9)

From (9) and (8), the microscopic distribution (7) becomes

Nα(r,θ ,ϕ, ṙ, θ̇ , ϕ̇, t) = ∑
i

1
r2

i sinθi
δ (r− ri)δ (θ −θi)δ (ϕ −ϕi)

1
r2

i sinθi
δ (ṙ− ṙi)δ (θ̇ − θ̇i)δ (ϕ̇ − ϕ̇i), (10)

where we have written |sinθi| = sinθi because 0 ≤ θi ≤ π .
The microscopic distribution (10) is in an appropriate form,
so that we can apply the transformation (1).

1. The inverted position distribution

The inversion of the microscopic position distribution is
given in Ref.1. In this subsection we make a quick review

by scrutinizing the development of such transformation con-
sidering the charge distribution

ρα(r,θ ,ϕ) = ∑
i

qiδ (Ω−Ωi)
1
r2

i
δ (r− ri), (11)
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where δ (Ω−Ωi) = (1/sinθi)δ (θ −θi)δ (ϕ −ϕi). By making

the substitution r → a2

r
, the Delta function transforms to

δ (
a2

r
− ri) = δ (g(r)).

By finding the root r0 of g(r),

a2

r
− ri = 0 ⇒ r0 =

a2

ri
,

we can write

δ (
a2

r
− ri) =

δ (r− r0)∣∣∣∣−a2

r2

∣∣∣∣
r=r0

=
r2

0
a2 δ (r− r0)

=
a2

r2
i

δ (r− a2

ri
) =

r2

a2 δ (r− a2

ri
).

By forming the product

1
r2

i
δ (

a2

r
− ri) =

a2

r4
i

δ (r− a2

ri
) =

a6

r6
i

δ (r− a2

ri
)

a4

r2
i

(12)

the charge distribution (11) becomes

ρα(
a2

r
,θ ,ϕ) = ∑

i
qiδ (Ω−Ωi)

a6

r6
i

δ (r− a2

ri
)

a4

r2
i

so that

ρ
′
α(r,θ ,ϕ) =

(
a5

r5

)
∑

i

qia
ri

a5

r5
i

δ (Ω−Ωi)
δ (r− a2

ri
)

a4

r2
i

= ∑
i

q′iδ (r− r′i)

where q′i =
a
ri

qi.

2. The inverted velocity distribution

By following the same development of Subsection II B 1,
we transform the microscopic velocity distribution (9):

δ (
ȧ2

r
− ṙi) = δ (−a2

r2 ṙ− ṙi) = δ (
a2

r2 ṙ+ ṙi) = δ (g(ṙ)).

The zero of g(ṙ) is

a2

r2 ṙ+ ṙi = 0 ⇒ ṙ0 =− r2

a2 ṙi,

so that

δ (
ȧ2

r
− ṙi) =

δ (ṙ− ṙ0)∣∣∣∣a2

r2

∣∣∣∣
ṙ=ṙ0

=
r2

a2 δ (ṙ− ṙ0) =
r2

a2 δ (ṙ+
r2

a2 ṙi).

(13)

C. The inverted microscopic distribution

By applying the transformation (1) to (8) and using (12),
we obtain the inverted position distribution

a6

r6
i

1
a4

r2
i

sinθi

δ (r− a2

ri
)δ (θ −θi)δ (ϕ −ϕi).

By applying the transformation (1) to (9) and using (13), we
obtain the inverted velocity distribution

1
a4

r2
i

sinθi

r2

a2 δ (ṙ+
r2

a2 ṙi)δ (θ̇ − θ̇i)δ (ϕ̇ − ϕ̇i).

Therefore, Nα(
a2

r
) is given by
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Nα(
a2

r
,θ ,ϕ, ṙ, θ̇ , ϕ̇, t) = ∑

i

a6

r6
i

1
a4

r2
i

sinθi

δ (r− a2

ri
)δ (θ −θi)δ (ϕ −ϕi)

a6

r6
i

1
a4

r2
i

sinθi

δ (ṙ+
a2

r2
i

ṙi)δ (θ̇ − θ̇i)δ (ϕ̇ − ϕ̇i)

= ∑
i

a12

r12
i

δ (r− r′i)δ (v−v′i) = ∑
i

r′i
12

a12 δ (r− r′i)δ (v−v′i) =
r12

a12 ∑
i

δ (r− r′i)δ (v−v′i),

(14)

where

δ (r− r′i)δ (v−v′i) =
1

a4

r2
i

sinθi

δ (r− a2

ri
)δ (θ −θi)δ (ϕ −ϕi)

1
a4

r2
i

sinθi

δ (ṙ+
a2

r2
i

ṙi)δ (θ̇ − θ̇i)δ (ϕ̇ − ϕ̇i).

Equation (14) is the microscopic distribution of the image particles located at r′i with velocity v′i, where

r′i =
(

a2

ri
,θi,ϕi

)
,

v′i =
(
−a2

r2
i

ṙi, θ̇i, ϕ̇i

)
.

(15)

The consistency of Eqs. (15) with (5) and (6) can be readily verified.
From (14) we define the inverted microscopic distribution N′

α ,

Nα(
a2

r
,θ ,ϕ, ṙ, θ̇ , ϕ̇, t) =

r12

a12 ∑
i

δ (r− r′i)δ (v−v′i) =
r12

a12 N′
α(r,θ ,ϕ, ṙ, θ̇ , ϕ̇, t). (16)

D. The inverted Klimontovich equation

The Klimontovich equation is known in the plasma physics literature6 as a conservation law in the phase space. By taking the
total time derivative of (16) we obtain the inverted Klimontovich equation

a12

r12
d
dt

[
Nα(

a2

r
,θ ,ϕ, ṙ, θ̇ , ϕ̇, t)

]
=

d
dt

[
N′

α(r,θ ,ϕ, ṙ, θ̇ , ϕ̇, t)
]
+12

ṙ
r

N′
α(r,θ ,ϕ, ṙ, θ̇ , ϕ̇, t) = 0. (17)

It follows from (17) and (16) that the total time derivative of N′
α(r) is formally the same as that of Nα(r), but with ri and vi

replaced by r′i and v′i respectively.

1. The inverted electrostatic radial field

To obtain an expression for the inverted force, we need to
know how the field transforms under inversion. Using the
derivatives of Section II, the field

Er(r) =−∂φ

∂ r

transforms according to

Er(r′) =−∂φ(r′)
∂ r′

=− ∂ r
∂ r′

∂

∂ r

[ r
a

φ
′(r)
]

=
r2

a2

(
1
a

φ
′(r)+

r
a

∂φ ′(r)
∂ r

)
= E ′

r(r),
(18)

where 1

E ′
r(r) =

r2

a2
∂

∂ r

[ r
a

φ
′(r)
]
. (19)

1 The definition of Eq. (19) as the electric field comes from the inverted
Lagrangian of a particle. If L(ri,vi) =

mi

2
v2

i − qiφ(ri) then L(r′i,v′i) =

mi

2
a4

r4
i

v2
i −qi

ri

a
φ ′(ri) = L′(ri,vi) is the inverted Lagrangian. Therefore,

d
dt

∂L′

∂ ṙi
− ∂L′

∂ ri
=−4mi

a4

r4
i

ṙ2
i

ri
+mi

a4

r4
i

r̈i

+2mi
a4

r4
i

v2
i

ri
−mi

a4

r4
i

r2
i θ̇ 2

i + r2
i ϕ̇2 sin2

θi

ri
+qi

∂

∂ ri

[ ri

a
φ
′(ri)

]
= 0

and r̈i = 3
ṙ2

i
ri

− v2
i

ri
− qi

mi

r4
i

a4
∂

∂ ri

[ ri

a
φ ′(ri)

]
. From Eq. (15), r̈i =

3
ṙi

2

ri
− v2

i
ri

− (a′r)i
r2

i
a2 , so that the definition Eq. (19) is justified.

This work is licensed under a Creative Commons Attribution 4.0 International License. Page 4

https://renatoag.org
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


renatoag.org ID: 4a039cda93fde4a2720e

Therefore, if Fr(r j) = q jEr(r j) is the electrostatic force on a
particle j due to a distribution of particles located at positions
ri, then

F ′
r (r j) = q jE ′

r(r j) = q j
r2

j

a2

(
1
a

φ
′(r j)+

r j

a
∂φ ′

∂ r

∣∣∣∣
r=r j

)

is the force F ′
r (r j) on the particle j due to the distribution of

particles located at positions r′i.

2. The inverted Klimontovich equation

We shall consider that the acceleration vector on equation
(17), which is given by

dv′i
dt

=
F(r′i,v′i, t)

mi
,

is transformed to a function of r and v,

dv
dt

=
F′(r,v, t)

mα

,

by the Delta functions in the transformed Klimontovich equa-
tion. We note, on the other hand, that the radial acceleration

(a′r)i =

(
dv′i
dt

)
r

is given as a function of the coordinates and

velocities of the particles by (6):

(a′r)i(ri,vi) = 3
a2

r2
i

ṙi
2

ri
− a2

r2
i

v2
i

ri
− a2

r2
i

r̈i. (20)

Therefore we can write

(a′r)i(r′i, v̇i
′) =

Fr(r′i, ṙi
′, t)

mi
. (21)

By means of the formation of a product along with the Delta
functions of N′

α , we combine (20) and (21) to obtain the radial
acceleration

r̈ = 3
ṙ2

r
− v2

r
− r2

a2 ar = 3
ṙ2

r
− v2

r
− r2

a2
F ′

r (r, ṙ, t)
mα

,

where the radial component of the force is

F ′
r = qα

r2

a2
∂

∂ r

[ r
a

φ
′(r)
]
.

Similarly, the orbital components of the generalized accel-
erations are

θ̈ =
2
r

ṙθ̇ + ϕ̇
2 sinθ cosθ +

r2

a2
aθ

r
,

ϕ̈ =
2
r

ṙϕ̇ −2θ̇ ϕ̇ cotθ +
r2

a2
aϕ

r sinθ
.

The inverted Klimontovich equation is therefore given by

∂N′
α

∂ t
+ ṙ

∂N′
α

∂ r
+ θ̇

∂N′
α

∂θ
+ ϕ̇

∂N′
α

∂ϕ

+

{
3

ṙ2

r
− v2

r
− qα

mα

r4

a4
∂

∂ r

[ r
a

φ
′(r)
]}

∂N′
α

∂ ṙ
+12

ṙ
r

N′
α

+

(
2
r

ṙθ̇ + ϕ̇
2 sinθ cosθ +

r2

a2
aθ

r

)
∂N′

α

∂ θ̇

+

(
2
r

ṙϕ̇ −2θ̇ ϕ̇ cotθ +
r2

a2
aϕ

r sinθ

)
∂N′

α

∂ ϕ̇
= 0. (22)

III. THE STATISTICAL FUNCTIONS

The probability that a plasma particle is at the state Xαi in
the range dXαi should be equal to the one that its image is at

X′
αi in the range dX′

αi, where dX′
αi =

a12

rαi12 dXαi. Therefore

we should have

∫
FN(Xα1, . . . ,XαN̄α

)dXα1 . . .dXαN̄α

=
∫

FN(X′
α1, . . . ,X

′
αN̄′

α
)dX′

α1 . . .dX′
αN̄′

α
= 1.

The total number of plasma particles is

N̄α =
∫

Nα(r,v, t)dX, (23)

where dX = drdv is not taken over particle trajectories. We

note that, by letting r → a2

r
in the integral (23), it becomes

∫
Nα(

a2

r
r̂,v, t)

a12

r12 dX =
∫

N′
α(r,v, t)dX = N̄′

α .

Therefore N̄′
α = N̄α , or, the number of image particles is equal

to the number of plasma particles, as expected.
Now we directly transform the average value of Nα(r,v, t)

taken over the plasma particles trajectories,

⟨Nα(r,v, t)⟩=
∫

FNNα(r,v, t)dXall ,

where FN is the probability density function. We obtain, by
using equation (14) and by considering N̄′

α = N̄α since there
is a one to one correspondence between a plasma particle and
its image,
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〈
Nα(

a2

r
r̂,v, t)

〉
=
∫

FN

N̄′
α

∑
i=1

r′
αi

12

a12 δ (r− r′αi)δ (v−v′αi)dXall

=
∫

FN

[
δ (r− r′α1)δ (v−v′α1)

a12

rα112 drα1dvα1 . . .drN̄α
dvN̄α

+ · · ·+δ (r− r′N̄′
α
)δ (v−v′N̄′

α
)drα1dvα1 . . .

a12

rN̄′
α

12 drN̄α
dvN̄α

]
=
∫

FN

[
δ (r− r′α1)δ (v−v′α1)dr′α1dv′α1 . . .drN̄α

dvN̄α
+ · · ·+δ (r− r′N̄′

α
)δ (v−v′N̄′

α
)drα1dvα1 . . .dr′N̄α

dv′N̄α

]
=
∫ [

FN(r,v, . . . ,rN̄α
,vN̄α

)drα2dvα2 . . .drN̄α
dvN̄α

+ · · ·+FN(rα1,vα1, . . . ,r,v)drα1dvα1 . . .drN̄α−1dvN̄α−1
]

= N̄α

∫
FN(r,v, . . . ,rNα

,vNα
)drα2dvα2 . . .drN̄α

dvN̄α
= n̄α fα(r,v, t) = ⟨Nα(r,v, t)⟩ .

Therefore, the average value of Nα is invariant under inver-
sion in a sphere, yielding the same one-particle distribution
function. This suggests a statistical equivalence of the plasma
with its image, where

fα(r1,v1, t) =V
∫

FN(Xα1, . . . ,XαN̄α
)dXα2 . . .dXαN̄α

(24)

is the one particle distribution function.
Also we should verify the average value of N′

α taken over
dX′

all :

〈
N′

α (r,v, t)
〉
=
∫

FN

N̄′
α

∑
i=1

δ (r− r′i)δ (v−v′i)dX′
all

= N̄′
α

∫
FN(r,v, . . . ,r′N̄′

α
,v′N̄′

α
)dr′2dv′2 . . .dv′N̄′

α

= n̄′α f ′α(r,v, t) =
〈
N′

α(r,v, t)
〉
,

where

V ′
∫

FN(X′
α1, . . . ,XαN̄′

α
)dX′

α2 . . .dX′
αN̄′

α
= f ′α(r

′
1,v

′
1, t) (25)

is the primed one particle distribution function.
By inverting coordinates and integrating both (24) and (25)

over dX′ and dX respectively, we obtain

∫
fα(r′,v′, t)

(a
r

)12
dX =

V
V ′

∫
f ′α(r,v, t)dX.

Therefore, for an arbitrary range of integration in dX and since
N̄α = N̄′

α ,

fα(r′,v′, t) =
n̄′α
n̄α

r12

a12 f ′α(r,v, t). (26)

Expression (26) is the statistical equivalent of the microscopic
expression (16).

A. The statistical kinetic equation for f ′α

The average of equation (22) over dX′
all , considering the

radial motion only to simplify the analysis, yields

∂ f ′α
∂ t

+ ṙ
∂ f ′α
∂ r

+
1

n̄′α

〈{
2

ṙ2

r
− qα

mα

r4

a4
∂

∂ r

[ r
a

φ
′(r)
]}

∂N′
α

∂ ṙ

〉
+12

ṙ
r

f ′α = 0,

(27)

which is the exact kinetic equation. The integration of this
equation in the range r < a, along with the Poisson’s equa-
tion for the inverted average potential, is equivalent to the non
primed system of equations in the range r > a.

Let us now make some development upon the Poisson’s
equation and average inverted potential.

B. The Poisson’s equation for the average inverted
potential

In order to obtain the Poisson’s equation in terms of the
average potential, let us verify how the microscopic potential
φ , given as an integral over the continuous space, in the form

φ(r, t) = ∑
α

qα

∫ Nα(r1,v1, t)
|r− r1|

dX1, (28)

transforms under a2/r. Here we have used a numbered nota-
tion to identify the variable of integration, so that it can take
the form X1,2,... or X′

1,2,... over the inverted space.
The factor

|r− r1|=
(
r2 + r2

1 −2rr1 cosγ
)1/2

transforms like∣∣∣∣a2

r
r̂− r1

∣∣∣∣= (a4

r2 + r2
1 −2

a2

r
r1 cosγ

)1/2

=
r1

r

(
a4

r2
1
+ r2 −2

a2

r1
r cosγ

)1/2

.
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Here we see that the transformation r → a2

r
also implies a

transformation r1 →
a2

r1
on the variable of integration. There-

fore, we obtain from (28)

φ(
a2

r
r̂, t)

= ∑
α

qα

∫ r12
1

a12
N′

α(r1,v1, t)

r1

r

(
a4

r2
1
+ r2 −2

a2

r1
r cosγ

)1/2

a12

r12
1

dX1

=
r
a ∑

α

qα

∫ a
r1

N′
α(r1,v1, t)(

a4

r2
1
+ r2 −2

a2

r1
r cosγ

)1/2 dX1 =
r
a

φ
′(r, t),

(29)

where

φ
′ (r, t) = ∑

α

qα

∫ a
r1

N′
α(r1,v1, t)(

a4

r2
1
+ r2 −2

a2

r1
r cosγ

)1/2 dX1

is the integral form of φ ′.
The Poisson’s equation for the microscopic potential is

∇
2
φ =−4π ∑

α

qα

∫
Nα(r,v, t)dv

which transforms to

∇
2
φ
′ =−4π ∑

α

qα

∫ r
a

N′
α(r,v, t)dv, (30)

where we have used (4) and (16).
Averaging (30) over dX′

all we obtain

∇
2
Φ

′

=−4π ∑
α

qα

∫ [∫
FN

N̄′
α

∑
i=1

r′i
a

δ (r− r′i(t))δ (v−v′i(t))dX′
all

]
dv

=−4π
r
a ∑

α

qα n̄′α

∫
f ′α(r,v, t)dv

=−4π
r
a ∑

α

qα n̄α

∫ (a
r

)6
fα(r′,v′, t)dv′ =

a5

r5 ∇
2
Φ,

(31)

which is in accordance with (3) and where we have used (26),
and the average potential Φ′(r, t) is given by〈

φ
′(r, t)

〉
= Φ

′(r, t)

=
∫

FN

∑
α

qα

∫ a
r1

N′
α(r1,v1, t)(

a4

r2
1
+ r2 −2

a2

r1
r cosγ

)1/2 dX1

dX′
all

= ∑
α

qα n̄′α

∫ a
r1

f ′α(r1,v1, t)(
a4

r2
1
+ r2 −2

a2

r1
r cosγ

)1/2 dX1.

C. Fluctuations

Introducing the fluctuations

δN′
α(r,v, t) = N′

α(r,v, t)− n̄′α f ′α(r,v, t), (32)

δφ
′(r, t) = φ

′(r, t)−Φ
′(r, t), (33)

and substituting to (27) we obtain

∂ f ′α
∂ t

+ ṙ
∂ f ′α
∂ r

+

{
2

ṙ2

r
− qα

mα

r4

a4
∂

∂ r

[ r
a

Φ
′
]}

∂ f ′α
∂ ṙ

+12
ṙ
r

f ′α =

〈
qα

mα n̄′α

r4

a4
∂

∂ r

[ r
a

δφ
′
]

∂δN′
α

∂ ṙ

〉
, (34)

where the conditions

〈
∂

∂ r

[ r
a

δφ
′
]〉

= 0,〈
∂δN′

α

∂ ṙ

〉
= 0,

follow from (32) and (33).

D. The transformed Vlasov equation and the final system
of equations

The transformed Vlasov equation is finally obtained from
(34),

∂ f ′α
∂ t

+ ṙ
∂ f ′α
∂ r

+

{
2

ṙ2

r
− qα

mα

r4

a4
∂

∂ r

[ r
a

Φ
′
]}

∂ f ′α
∂ ṙ

+12
ṙ
r

f ′α = 0.

(35)
From equation (19) it is clear that we can make the replace-

ment

r2

a2
∂

∂ r

[ r
a

Φ
′
]
= E′

r(r), (36)

where E′
r(r) is the inverted average field, in the Vlasov equa-
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tion (35) and in the Poisson’s equation (31), considering

∇
2
Φ

′ =
1
r

∂ 2

∂ r2 (rΦ
′) =

a
r

∂

∂ r

[
a2

r2 E
′
r(r)
]
.

Therefore we obtain the system of equations

∂ f ′α
∂ t

+ ṙ
∂ f ′α
∂ r

+

{
2

ṙ2

r
− qα

mα

r2

a2E
′
r

}
∂ f ′α
∂ ṙ

+12
ṙ
r

f ′α = 0, (37)

∂

∂ r

[
a2

r2 E
′
r

]
=−4π

r2

a2 ∑
α

qα n̄′α

∫
f ′α(r,v, t)dv. (38)

These two equations form the basis for the solution of an elec-
trostatic radial problem. In the present work, two examples on
the obtention of the plasma potential for given plasma distri-
butions will be provided in Sec. IV.

Given the already developed inverted equations, we are in
condition to enounce that, If fα is a solution of the Vlasov
equation, then f ′α given by Eq. (26) is a solution of Eq. (37).

IV. APPLICATION OF THE FORMALISM

We can apply the inverted transformed quantities by follow-
ing two approaches.

The first approach is to replace the original system by the
transformed one and obtain a solution for this one. If an ana-
lytical solution is achieved, the reverse transformation can be
applied and the original quantities evaluated. In Section IV B
we formulate an example of this approach. Section IV B also
has the additional purpose of certifying the correctness of the
developed inverted equations so far, since a known potential
is obtained.

The second approach is to use the transformed equations to
extend the plasma inside the sphere, so that the integration can
be made in the whole space. This should be particularly useful
for the study of plasma waves under Fourier integration.

A. Stationary states

As an example on how a solution of stationary states trans-
forms under inversion, let us take the Boltzmann distribution
for radial motion

fα(r,v) = Aα exp
(
− ṙ2

2v2
α

− qα

mα v2
α

Φ(r)
)

1
r2 sinθ

δ (θ̇)δ (ϕ̇),

where Aα is the normalization constant and vα is the thermal
velocity, vα = (kBTα/mα)

1/2, with kB being the Boltzmann
constant and Tα the temperature associated with the radial ki-
netic energy of the particles of species α . The function Φ is
the average potential. Under inversion fα transforms accord-
ingly to

fα(r′,v′) = Aα exp
(
−a4

r4
ṙ2

2v2
α

− qα

mα v2
α

r
a

Φ
′(r)
)

× r2

a4 sinθ
δ (θ̇)δ (ϕ̇)

so that, from Eq. (26),

f ′α(r,v) = Aα

n̄α

n̄′α

a12

r12 exp
(
−a4

r4
ṙ2

2v2
α

− qα

mα v2
α

r
a

Φ
′(r)
)

× r2

a4 sinθ
δ (θ̇)δ (ϕ̇). (39)

Let fα(r, ṙ) =
∫

fα(r,v)r2 sinθdθ̇dϕ̇ . Therefore, f ′α(r, ṙ)
should be a solution of Eq. (35). Indeed, by taking
(∂ f ′α/∂ t) = 0, we obtain

ṙ
∂ f ′α
∂ r

+

{
2

ṙ2

r
− qα

mα

r4

a4
∂

∂ r

[ r
a

Φ
′
]}

∂ f ′α
∂ ṙ

+12
ṙ
r

f ′α = 0. (40)

By calculating the explicit partial derivatives out of (39),

∂ f ′α
∂ r

=−12
r

f ′α +

(
2

a4

r5
ṙ2

v2
α

− qα

mα v2
α

∂

∂ r

[ r
a

Φ
′(r)
])

f ′α ,

∂ f ′α
∂ ṙ

=−a4

r4
ṙ

v2
α

f ′α ,

and substituting them into (40), the steady state solution (39)
is verified.

This specific example does not reduce the generality of Eq.
(37), which should be valid for any Vlasov equilibrium state.

B. Debye-Hückel potential

Let φ be the microscopic potential in the neighborhood of
a conducting sphere surrounded by a plasma. The value of φ

at any r in space is given by the sum of the discrete potentials
of each plasma particle plus its image. It is clear, therefore,
that the average potential inside the sphere is given by Eq.
(31), since the average of all delta distributions for the plasma
particles is zero inside the sphere.

We start by performing the velocity integration in (31) us-
ing Eq. (39) with normalization constant Aα = (1/2π)1/2vα ,
considering an electron-ion plasma, and obtain the linearised
equation

∂ 2Ψ′

∂ρ2 +
2
ρ

∂Ψ′

∂ρ

=
ℓ2

ρ5

{[(
1− erf

(√
−ρΨ′

)
θ(−Ψ

′)
)

eρΨ′

− ηi

(
1− erf

(√
τiρΨ′

)
θ(τiΨ

′)
)

e−τiρΨ′]}
≈ ℓ2

ρ4 Ψ
′,

(41)

which is written in terms of the dimensionless quantities

Ψ =
eΦ

kBTe
, ρρρ =

r
a
, ℓ=

a
λe

, ηα =
n̄α

n̄e
, τα =

Te

Tα

,

where e is the fundamental charge, the Debye length λe is
defined by (kBTe/4πe2n̄e)

1/2 and n̄α is the density at infinity.
In obtaining (41) we have made ηi = 1 and τi ≫ 1.
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The general solution of Eq. (41) is given by Ψ′(ρ) =
k2 cosh(ℓ/ρ) − ik1 sinh(ℓ/ρ), where k1 and k2 are con-
stants. If the boundary conditions at ρ = 1 are Ψ′(1) and
(∂Ψ′/∂ρ)ρ=1 = ℓΨ′(1), then

Ψ
′(ρ) = Ψ

′(1)exp
[
−
(

1
ρ
−1
)
ℓ

]
. (42)

This is the inverted Debye-Hückel potential under transfor-
mation (3), and, therefore, this certifies the correctness of the
power law given in the right hand side of the linearised equa-
tion (41), and also the correctness of Eqs. (31), (35) and (39).
We can also use (42) and its inverse to verify that2∫

0≤r≤a

(
∇

2
Φ

′)dr =
∫

r≥a

(
∇

2
Φ
) a

r
dr. (43)

C. The induced charge in a conducting sphere

A simple application of the formalism is to obtain the total
induced charge by the plasma on a conducting sphere. Us-
ing the charge density from Poisson’s equation (31), the total
induced charge is given by

Q′ =
∫ r

a ∑
α

qα n̄′α

∫
f ′α(r,v)dvdr , 0 ≤ r ≤ a. (44)

If the plasma potential is the Debye-Hückel potential, then the
induced charge number is

Z′ =−ℓ2

δ

∫ 1

0

Ψ′

ρ2 dρ =−ℓΨ′(1)
δ

=− ℓ

δe

(
∂Ψ′

∂ρ

)
ρ=1

, (45)

where δ = e2/akBTe = e2/ℓλekBTe = δe/ℓ. We see that the ex-
pression (44) yields the charge number Z′ = 4πa2σ ′/e, where
σ ′ = −(1/4π)(∂Φ′/∂ r)r=a is the portion of the total surface
charge density due to charge induction by the plasma. The
total charge density defined by 4πσT = E′

r(a) yields the total
charge number ZT on the surface,

ZT =
Ψ′(1)

δ
−Z′ (46)

where we have used the expression of the electric field (36).
Expression (46), which was obtained from the transformed

quantities, is equivalent to the expression CΦ(a) = Q com-
monly used in dusty plasmas charging theories for spherical
grains7,8, where Q is the dust grain charge and C is the capac-
itance given by a2(1/a+1/λe). When ℓ≪ 1, the approxima-
tion C = a is equivalent to Z′ = 0. Expression (46) makes it
clear also that the second term, a2/λe, of the capacitance is
due to the plasma induced charge on the conducting sphere.

One may argue that the use of Eqs. (36), (44), (45) and
(46) is not necessary, since the same expression for the total
charge is provided by the potential Ψ, ZT = (1+ℓ)Ψ(1)/δ , by

requiring continuity of the potential at ρ = 1. Not to mention
the simplicity of just using the expression CΦ(a) = Q. How-
ever, there may be plasma distributions for which the analyti-
cal expression of the potential is not known and so is not the
capacitance. For this case, if a numerical solution of the po-
tential is provided, then the induced charge can be estimated
by using Eq. (45).
V. FINAL REMARKS

In the present analysis we have developed the inversion in
a sphere transformations of several microscopic functions and
microscopic equations of a plasma, which were necessary for
the outcome of the inverted Klimontovich equation (22). We
have also obtained the associated statistical functions neces-
sary for the outcome of the inverted radial Vlasov equation
(35), which was the main purpose of the present work. We
have found that the transformed Vlasov equation (35) is not
invariant under the transformation (1), unlike the Poisson’s
equation which is invariant under the same transformation1.
However, in general, if fα is a solution of the Vlasov equa-
tion, then f ′α given by (26) is a solution of Eq. (35).

We have shown, as an example, that the Boltzmann distri-
bution, which is a stationary state of the Vlasov equation, can
be inverted to become a solution of (35). We have certified the
correctness of our development in Sec. IV by the application
of the Vlasov-Poisson’s inverted equations to obtain the in-
verted Debye-Hückel potential. Also we have shown that the
inverted field at the surface permits to distinguish the induced
plasma charge on the sphere from the total charge on it, and
that the expression for the total charge on the sphere is equal
to the one used in dusty plasmas charging theories.

The usefulness of the transformed form (35) should be
proven in practice: if there are plasma physics configurations
for which it is easier to integrate the inverted Vlasov equation
for r < a than it is to integrate the Vlasov equation for r > a.
To foreseen the number of applications on the field of plasma
physics is beyond the horizon our sight can reach at the cur-
rent date, but we believe that the present theoretical analysis
is quite general to electrostatic plasma physics problems.
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